,薄膜物理中stm工作原理及工作模式?

用户投稿 91 0

关于量子隧道效应怎么做的问题,小编就整理了3个相关介绍量子隧道效应怎么做的解答,让我们一起看看吧。

薄膜物理中stm工作原理及工作模式?

STM是利用量子隧道效应工作的。若以金属针尖为一电极,被测固体样品为另一电极,当他们之间的距离小到1nm左右时,就会出现隧道效应,电子从一个电极穿过空间势垒到达另一电极形成电流。隧道电流与针尖样品间距成负指数关系。对于间距的变化非常敏感。因此,当针尖在被测样品表面做平面扫描时,即使表面仅有原子尺度的起伏,也会导致隧道电流的非常显著的、甚至接近数量级的变化。

这样就可以通过测量电流的变化来反应表面上原子尺度的起伏。 

量子隧穿效应公式?

量子隧穿效应并没有公式,量子穿隧效应或量子隧道效应(Quantum tunnelling effect)为一种量子特性,是如电子等微观粒子能够穿过它们本来无法通过的“墙壁”的现象。这是因为根据量子力学,微观粒子具有波的性质,而有不为零的机率穿过势障壁。

隧道效应的例子

α衰变就是因为α粒子摆脱了本来不可能摆脱的强力的束缚而“逃出”原子核。 扫描隧道显微镜(scanning tunneling microscope)是量子穿隧效应的主要应用之一。扫描隧道显微镜可以克服普通光学显微镜像差(aberration)的限制,通过穿遂电子扫描物体表面,从而辨别大大小于光波长的物体。

宏观物体的隧道效应

理论上,宏观物体也能发生隧道效应。人也有可能穿过墙壁,但要求组成这个人的所有微观粒子都同时穿过墙壁,其实际上几乎是零,以至于人类历史以来还没有成功的纪录。

隧道效应;隧穿效应;势垒贯穿;tunneling effect 又称隧穿效应,势垒贯穿。按照经典理论,总能量低于势垒是不能实现反应的。但依量子力学观点,无论粒子能量是否高于势垒,都不能肯定粒子是否能越过势垒,只能说出粒子越过势垒概率的大小。它取决于势垒高度、宽度及粒子本身的能量。能量高于势垒的、运动方向适宜的未必一定反应,只能说反应概率较大。而能量低于势垒的仍有一定概率实现反应,即可能有一部分粒子(代表点)穿越势垒(也称势垒穿透barrier penetration),好像从大山隧道通过一般。这就是隧道效应。例如H+H2低温下反应,其隧道效应就较突出。

根据爱因斯坦狭义相对论,任何物质在任何状况下的速度都不会超过光速-- 299,792,458米/秒。从理论上说,如果超过光速,时间将会出现倒流。 据报道,日前两位德国科学家却声称,利用量子隧穿效应(quantum tunnelling),他们找到了让光突破自己速度限制的方法。

单电子器件在工作中是如何利用量子隧穿效应和库仑堵塞的?

单电子器件的基本物理原理是源于纳米隧道结中单个电子输运产生的库仑阻塞效应,其通过操纵单个或少数几个电子的运动来完成器件工作。它具有极低功耗、极小尺寸和一些固有的功能特性,如库伦振荡等优点。即使器件缩小到分子尺度其器件功能仍然有效,且理论上讲,性能随着尺寸的减小而提高,极有可能称为未来大规模集成电路的重要组成部分之一。

目前,单电子晶体管有两种实现方案,即金属-绝缘体型和半导体型,不管是哪一种类型的SET,其基本部分是由介观尺度(纳米)的量子点和隧道结以及与之相连的宏观外电极和电源组成,它们都可以等效为一对势垒中间有一个库仑岛的物理模型。

到此,以上就是小编对于量子隧道效应怎么做的问题就介绍到这了,希望介绍量子隧道效应怎么做的3点解答对大家有用。

抱歉,评论功能暂时关闭!