,你所了解的特异纳米现象有哪些?

用户投稿 96 0

关于纳米量子尺寸效应的结果的问题,小编就整理了4个相关介绍纳米量子尺寸效应的结果的解答,让我们一起看看吧。

你所了解的特异纳米现象有哪些?

1、表面效应是指纳米粒子表面原子与总原子数之比随着粒径的变小而急剧增大后所引起的性质上的变化。表9-2给出了纳米粒子尺寸与表面原子数的关系。

随粒径减小,表面原子数迅速增加。另外,随着粒径的减小,纳米粒子的表面积、表面能的都迅速增加。这主要是粒径越小,处于表面的原子数越多。表面原子的晶体场环境和结合能与内部原子不同。

表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易于其他原子想结合而稳定下来,因而表现出很大的化学和催化活性。

2、量子尺寸

粒子尺寸下降到一定值时,费米能级接近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。Kubo采用一电子模型求得金属超微粒子的能级间距为:4Ef/3N

式中Ef为费米势能,N为微粒中的原子数。宏观物体的N趋向于无限大,因此能级间距趋向于零。纳米粒子因为原子数有限,N值较小,导致有一定的值,即能级间距发生分裂。

半导体纳米粒子的电子态由体相材料的连续能带随着尺寸的减小过渡到具有分立结构的能级,表现在吸收光谱上就是从没有结构的宽吸收带过渡到具有结构的吸收特性。在纳米粒子中处于分立的量子化能级中的电子的波动性带来了纳米粒子一系列特性,如高的光学非线性,特异的催化和光催化性质等。

为什么纳米材料吸波性能好?

纳米材料之所以具有优异的吸收电磁波性能是因为:

1、纳米吸波材料的比表面积大,纳米颗粒表面原子比例高,不饱和键和悬挂键多,大量悬挂键的存在使界面极化和多重散射,吸收频带展宽;

2、纳米吸波材料的量子尺寸效应使电子能级发生分裂,分裂的能级间距有些正处于微波的能量范围,从而产生了新的吸收通道;

3、纳米吸波材料中的原子和电子在微波场的辐照下运动加剧,增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能;

4、纳米磁性粒子具有较高的矫顽力,可引起大的磁滞损耗。

量子尺寸效应举例?

量子尺寸效应

量子尺寸效应是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。

为什么纳米材料光催化性能好?

1、比表面积大:使活性位点增多 2、量子尺寸效应:使能级分立,增加其氧化性和还原性

到此,以上就是小编对于纳米量子尺寸效应的结果的问题就介绍到这了,希望介绍纳米量子尺寸效应的结果的4点解答对大家有用。

抱歉,评论功能暂时关闭!